NEW YORK (GenomeWeb News) – The past decade has seen a dramatic rise in the number and diversity of biobanks in the US, from academic institutions to research institutes and hospitals, and any efforts at creating regulations or governing rules for them will require more than a 'one-size-fits-all' approach, according to a new survey.
Funded by the National Human Genome Research Institute and published today in BioMed Central's Genome Medicine, the survey found that nearly two-thirds of the nation's biobanks were launched over the past decade, and they are an "extraordinarily diverse" group, from the size of their collections to the types of specimens they harbor to their fields of study and applications.
The study's lead author, Gail Henderson, professor and chair of the Department of Social Medicine at the University of North Carolina at Chapel Hill, told GenomeWeb Daily News this week that the "rise of genomics and large-scale gene-environment studies" have led biobanks to "play an increasingly important role in biomedical research."
"Many articles discuss the ways they are changing the research enterprise – but they have never been systematically studied," and there is little empirical data or details "on how they are run or on the policies and practices they have to manage their work," Henderson said.
Although it is difficult to determine the exact number of biobanks operating in the US, by hunting through a range of sources the UNC-based research team was able to create a list of nearly 800 banks. Their online survey generated responses from 456 biobanks, and the team found that 59 percent of these were established after 2001.
Nearly 50 percent of these banks said that the main biomolecule that they store is DNA, 11 percent said RNA, 7 percent said protein, 20 percent said they do not store biomolecules, and 9 percent said 'other'.
In total, these banks may house from tens of millions to over 50 million samples, the researchers found, and 53 percent of these specimens were stored to support research on particular diseases or disease types. By far, the largest portion of these is being used for cancer research, which is followed by biospecimens stored for neurological diseases like Alzheimer's and HIV/AIDS.
As for the types of biological specimens these repositories store, 77 percent said they hold serum/plasma, 69 percent store solid tissues, 55 percent store whole blood, and 49 percent house peripheral blood cells or bone marrow. Around 7 percent of the biobanks store pathological body fluids, and around two or three percent have hair and toenail samples.
The rise of genome-focused research after the completion of the sequencing of the human genome a decade ago appears as if it may be a key driver in the biobank explosion. Since then, biobanks have been created to facilitate research generally, rather than to support studies of single diseases or to focus on one area of human biology.
"While there are likely multiple explanations for these results, it is possible that the changing landscape of genomic technology has facilitated a broadening of scope in research pursuits, so that biobanks are not as likely to limit their work to one disease," the authors stated in the paper.
The expansion and use of new biobanks likely is "all about genomic information," Henderson told GWDN.
"When we talk about specimens, and look at the numbers and kinds of specimens that people are saving, and the fact that the majority of our banks are cancer banks, and cancer research is fundamentally about DNA," it is hard not to come to the conclusion that much of this growth is about genomics, she said.
Henderson also said the survey uncovered a "huge diversity" in the types of biobanks in the US.
"They get established for a variety of reasons, some accidental, some intentional, and they vary in size, in when they were established, how formal they are as organizations, what kind of specimens they hold, and where those specimens come from," she said.
Biobanks also are diverse in their structural affiliations, although nearly 90 percent are embedded within other institutions, and nearly 80 percent of those embedded banks are located within academic institutions. Hospitals house around a quarter of these biobanks, and around 15 percent are part of a research institute.
While they house the samples that are helping to fuel genomics and molecular research, biobanks also can bring up ethical and policy questions that have caught the eye of policy-watchers at NHGRI.
Several issues that have been flagged by the institute's Ethical, Legal, and Social Implications Research program are stirred up by the expansion of biobanks, such as questions about policies governing data sharing and security, privacy and the identifiability of genomic information, how and when to return research results and incidental findings, how governance structures function at genomic repositories, and informed consent issues caused by the multiple uses for samples by genome researchers.
"Given the diversity in biobank organizational characteristics, it is likely that management and governance policies will have to be tailored to fit the particular context. One size will not fit all," Henderson said.
For example, she said, the biobanks in the survey showed a range of policies regarding who may access the data, with some enabling only the researchers who run the repository to access it, and others providing nearly universal access with no applicants denied.
There currently are few or no specific guidelines and laws that specifically govern biobanks and biorepositories, she explained.
A list of voluntary best practices for biospecimen resources published by the National Cancer Institute is probably the best available guidelines for biobanks to follow, Henderson explained, but there is not enough specificity in those or other rules or guidelines to apply them to the range of biobanks that are out there now.
"It's not as is if there are no federal regulations that affect biobanks," she said. "Certainly, human subject regulations do, and material transfer agreements and commercialization [rules] fall under certain federal regulatory guidance, but none are specific to biobanks."
In some ways, she said, the biobanking and biorepository boom has created a "Wild West" landscape that will require further study, Henderson said. She and her fellow investigators now plan to begin to tack their research aims toward the ethical and regulatory issues that the proliferation of and multiple new uses for biobanks have brought about.