Only a small percentage of the mouse genome codes for proteins, and researchers don't have a thorough understanding of the function of much of the rest of it. To elucidate that portion, researchers at the Ludwig Institute for Cancer Research at the University of California, San Diego, published a study in Nature in July, in which they mapped 11 percent of the mouse functional genome, identifying more than 70 percent of conserved non-coding sequences as well as nearly 300,000 cis-regulatory elements in 19 different tissue and cell types.

Get the full story with
GenomeWeb Premium

Only $95 for the
first 90 days*

A trial upgrade to GenomeWeb Premium gives you full site access, interest-based email alerts, access to archives, and more. Never miss another important industry story.

Try GenomeWeb Premium now.

Already a GenomeWeb Premium member? Login Now.
Or, See if your institution qualifies for premium access.

*Before your trial expires, we’ll put together a custom quote with your long-term premium options.

Not ready for premium?

Browse our free articles
You can still register for access to our free content.

In Nature this week: association between genome-wide homozygosity and traits like height and cognitive ability, improved CRISPR-Cas9 editing, and more.

A survey examines how age, political leanings, and more influence how Americans view certain scientific topics, the Associated Press reports.

A researcher who pleaded guilty to making false statements in research reports has been sentenced to four and a half years in prison and must pay $7.2 million back to the NIH.

The BabySeq project to study the risks and benefits of sequencing newborns is underway.

Jul
14
Sponsored by
Agilent Technologies

This online seminar will outline a recent example of the use of molecular barcoding in combination with next-generation sequencing to detect somatic mosaicism in cancer patients.