Close Menu

Researchers from the University of Arkansas have developed a nanopositioning system that makes use of a tuning fork, probe-bound DNA, and a solid-state nanopore to control translocation of the DNA through the pore.

The team demonstrated in a study published in ACS Nano that they could thread DNA through the pore at a rate 100 microseconds per base, a rate that is slow enough to detect each base as it passes through the pore, according to the authors.

Get the full story with
GenomeWeb Premium

Only $95 for the
first 90 days*

GenomeWeb Premium gives you:
✔ Full site access
✔ Interest-based email alerts
✔ Access to archives

Never miss another important industry story.

Try GenomeWeb Premium now.

You may already have institutional access!

Check if I qualify.

Already a GenomeWeb or 360Dx Premium member?
Login Now.

*Before your trial expires, we’ll put together a custom quote with your long-term premium options.

Not ready for premium?

Register for Free Content
You can still register for access to our free content.

NPR says the explosion and fire earlier this week at a Russian lab that stores dangerous pathogens revives the question of whether such samples should be kept.

According to Wired, Nebula Genomics is providing a way for people to get their genomes sequenced anonymously.

A 26-year-old woman tells Cosmopolitan about learning her APOE status at a young age.

In Science journals this week: a functional genomic screen uncovers drug combination that increases KRAS inhibitor efficacy in aggressive lung cancer, and more.

Oct
23
Sponsored by
Swift Biosciences

This webinar will illustrate how single-cell methylation sequencing can be applied to gain significant insight into epigenetic heterogeneity in disease states, advancing cancer research discoveries.