Jumping genes, once thought to have quieted down, are still actively changing the human genome. "Jumping genes are transposable elements — genetic sequences that can mobilize themselves from one part of the genome to another," says John Moran, a professor at the University of Michigan Medical School. He and his team study long interspersed element-1 retrotransposons. "The way they mediate their mobility from one genetic location to another is that they're first transcribed into RNA, and then that resulting mRNA is reverse transcribed and integrated into a new genomic position," he says.

Get the full story with
GenomeWeb Premium

Only $95 for the
first 90 days*

A trial upgrade to GenomeWeb Premium gives you full site access, interest-based email alerts, access to archives, and more. Never miss another important industry story.

Try GenomeWeb Premium now.

Already a GenomeWeb Premium member? Login Now.
Or, See if your institution qualifies for premium access.

*Before your trial expires, we’ll put together a custom quote with your long-term premium options.

Not ready for premium?

Register for Free Content
You can still register for access to our free content.

Labs in the US and South Korea are hoping to bring the woolly mammoth back from beyond extinction, Newsweek writes.

Geneticist Adam Rutherford speaks with National Geographic about paleogenetics, race, and more.

Researchers link genetic links between education and smoking and longevity.

In PNAS this week: influence of gene environment interactions on polygenic traits, epigenetic features affecting fruit fly foraging, and more.