NEW YORK (GenomeWeb News) – A team of researchers from the University of Washington has developed a technique for mapping regulatory protein occupancy across the genome, without prior knowledge of the specific proteins involved.

The approach, which they dubbed "digital genomic footprinting" relies on a combination of DNase I cleavage and high throughput, massively parallel sequencing. The team applied their genomic footprinting to the model organism Saccharomyces cerevisiae, or baker's yeast, identifying thousands of proposed protein binding regions in the genome.

To read the full story....

Register for Free.

Already have a GenomeWeb or 360Dx account?
Login Now.

An opinion piece in the Guardian argues that President Donald Trump is uninterested in science and that might not be a bad thing for the field.

The San Francisco Chronicle reports the Veterans Affairs Health System is studying whether genetic testing can help prescribe better depression therapies.

Stat News reports that Spark Therapeutics' Luxturna is now being used to treat a wider array of patients.

In Genome Biology this week: transcription factor use among brittle stars, single-cell RNA sequencing strategy, and more.

Sponsored by
Thermo Fisher Scientific

In this webinar, the first in the “New Frontiers in Liquid Biopsy Research” series, Bea Bellosillo, head of pathology at the Hospital del Mar, will discuss her experience evaluating an early-access lung cancer panel that detects copy number variants and fusions.