NEW YORK (GenomeWeb News) – A team of researchers from the University of Washington has developed a technique for mapping regulatory protein occupancy across the genome, without prior knowledge of the specific proteins involved.

The approach, which they dubbed "digital genomic footprinting" relies on a combination of DNase I cleavage and high throughput, massively parallel sequencing. The team applied their genomic footprinting to the model organism Saccharomyces cerevisiae, or baker's yeast, identifying thousands of proposed protein binding regions in the genome.

Get the full story

This story is free
for registered users

Registering provides access to this and other free content.

Register now.

Already have an account?
Login Now.

Researchers find that a personalized medicine approach could help people who experience pain while taking statins, New Scientist reports.

US National Science Foundation is continuing its responsible research conduct training policy despite its flaws, ScienceInsider reports.

A CRISPR-themed meeting explored how the tool could and should be used, Wired reports.

In Science this week: database of proteins' effects on cancer, targeted error correction sequencing, and more.

Sep
27
Sponsored by
Philips Genomics

This webinar will present an in-depth look at how Memorial Sloan Kettering Cancer Center has developed and implemented a next-generation sequencing panel for mutational tumor profiling of advanced cancer patients.

Sep
28
Sponsored by
Fabric Genomics

This webinar will discuss the critical role that software can play for clinical labs looking to establish comprehensive genomic testing programs.