NEW YORK (GenomeWeb) – A new study by researchers from the Baylor-Hopkins Center for Mendelian Genomics has provided data that the authors hope will inform ongoing discussion on how best to interpret and return to patients incidental findings from genomic sequencing.

In the study, published last week in Genetics in Medicine, only two of more than 200 patients from the Baylor-Hopkins research program had a returnable incidental finding.

Get the full story with
GenomeWeb Premium

Only $95 for the
first 90 days*

GenomeWeb Premium gives you:
✔ Full site access
✔ Interest-based email alerts
✔ Access to archives

Never miss another important industry story.

Try GenomeWeb Premium now.

You may already have institutional access!

Check if I qualify.

Already a GenomeWeb or 360Dx Premium member?
Login Now.

*Before your trial expires, we’ll put together a custom quote with your long-term premium options.

Not ready for premium?

Register for Free Content
You can still register for access to our free content.

The Washington Post reports on a Federal Bureau of Investigation plan to place rapid DNA analyzers at booking stations around the country.

In an editorial, officials from scientific societies in the US and China call for the international community to develop criteria and standards for human germline editing.

The US National Institutes of Health is to review studies that have received private support for conflicts of interest, according to the New York Times.

In Science this week: the PsychENCODE Consortium reports on the molecular mechanisms of neuropsychiatric disorders, and more.

Jan
30
Sponsored by
Loop Genomics

This webinar will provide a comparison of several next-generation sequencing (NGS) approaches — including short-read 16S, whole-genome sequencing (WGS), and synthetic long-read sequencing technology — for use in microbiome research studies.

Jan
30
Sponsored by
Loop Genomics

This webinar will provide a comparison of several next-generation sequencing (NGS) approaches — including short-read 16S, whole-genome sequencing (WGS), and synthetic long-read sequencing technology — for use in microbiome research studies.

Jan
31
Sponsored by
Roche

This webinar highlights the use of single-cell genomics to identify distinct cell types and states associated with enhanced immunity.