Skip to main content
Premium Trial:

Request an Annual Quote

Rare Variants in ATP8B4, ABCA1 Tied to Alzheimer's Disease Risk

Rare variants in ATP8B4 and ABCA1 may increase risk of developing Alzheimer's disease, a new study in Nature Genetics finds. An international team of researchers compared the gene-based burden of rare damaging variants in 16,036 individuals with Alzheimer's disease and 16,522 controls who had all undergone exome sequencing. They uncovered half a dozen genes with a differential burden of rare variants between cases and controls, five of which they confirmed in additional analyses. Those five also mapped to genome-wide association study loci, leading the researchers to look for potential driver genes and homing in on RIN3, CLU, ZCWPW1, and ACE. However, they note that the GWAS sentinel variants and the rare-variant burden appear to be independent. The researchers note that their analysis points to ATP8B4 and ABCA1 as new risk factors for Alzheimer's and also underscores the role of amyloid-β precursor protein processing, amyloid-β aggregation, lipid metabolism, and microglial function in the disease. "The associated genes strengthen our current understanding of [Alzheimer's disease] pathophysiology. When treatment options become available in the future, identification of damaging variants in these genes will be of interest to clinical practice," they write.

The Scan

Positive Framing of Genetic Studies Can Spark Mistrust Among Underrepresented Groups

Researchers in Human Genetics and Genomics Advances report that how researchers describe genomic studies may alienate potential participants.

Small Study of Gene Editing to Treat Sickle Cell Disease

In a Novartis-sponsored study in the New England Journal of Medicine, researchers found that a CRISPR-Cas9-based treatment targeting promoters of genes encoding fetal hemoglobin could reduce disease symptoms.

Gut Microbiome Changes Appear in Infants Before They Develop Eczema, Study Finds

Researchers report in mSystems that infants experienced an enrichment in Clostridium sensu stricto 1 and Finegoldia and a depletion of Bacteroides before developing eczema.

Acute Myeloid Leukemia Treatment Specificity Enhanced With Stem Cell Editing

A study in Nature suggests epitope editing in donor stem cells prior to bone marrow transplants can stave off toxicity when targeting acute myeloid leukemia with immunotherapy.