Skip to main content

Zhengqing Ouyang: The Second Code

Zhengqing Ouyang: The Second Code
Assistant professor, The Jackson Laboratory
Recommended by Wing Wong, Stanford University

Ouyang.jpgAs an undergraduate at Peking University in Beijing studying microbial genomes, Zhengqing Ouyang became fascinated by the different functional elements contained within the genome and how genes were regulated. Then as a graduate student in Wing Wong's lab at Stanford University, Ouyang began to study transcriptional regulatory networks in embryonic stem cells.

And now in his own lab at JAX, Ouyang is focusing on the so-called secondary genetic code of long, noncoding RNAs.

"We know that RNA, especially messenger RNA, encodes the so-called primary code to be translated into protein sequences," he said. "So now, recently, it's been discovered that [there are] thousands of long non-coding RNA in the human genome, which are not translated into protein, but are very important in different biological contents [such as] diseases in people and development."

Using statistical modeling and computational tools, Ouyang is searching through next-generation sequencing data to search for signals from long non-coding RNAs. In particular, he is focusing on determining the form, arrangement, and combination of these non-coding RNAs to try to tease out their function.

The challenge, Ouyang said, is to always keeping pushing. "I am never satisfied with what I have achieved and try to find the next big question to ask," he added.

Papers of note

Ouyang has been involved in the ENCODE project effort examining genome regulatory mechanisms.

"My role in the ENCODE project is to study hundreds of transcription factor binding sites in a genome-scale using ChIP-seq data, coupling that with RNA-seq data [to try] to understand the targets and the network of transcription factors in the combination that regulate gene expression levels.

That group published two papers in Nature in 2012 to which Ouyang contributed.

One mapped out the transcription, transcription factor binding, chromatin structure, and histone modification regions of the human genome. Ouyang and his colleagues in the consortium estimated that they were able to assign biochemical roles to much of the human genome.

And the other focused a bit more on how transcription factors interact to develop a sort of map of how regulatory information is organized in the human genome.

Looking ahead

A lot of data has been generated, especially by the ENCODE consortium as well as by individual labs, and in the next few years, Ouyang said that the field may need new approaches as they continue to analyze all that data.

"I think the field would benefit from developing sophisticated statistical and computational tools to interpret the data and identify the functional regulatory mechanism that can interpret the data and tell us new biology which would direct us to find out new tools for disease diagnosis and therapy," he said.

And the Nobel goes to…

Ouyang said that it would be "wonderful" to win the Nobel Prize, and if he does, he'd like it to be due to "my contribution to the discovery of secondary genetic code in long non-coding RNA."

The Scan

Call to Look Again

More than a dozen researchers penned a letter in Science saying a previous investigation into the origin of SARS-CoV-2 did not give theories equal consideration.

Not Always Trusted

In a new poll, slightly more than half of US adults have a great deal or quite a lot of trust in the Centers for Disease Control and Prevention, the Hill reports.

Identified Decades Later

A genetic genealogy approach has identified "Christy Crystal Creek," the New York Times reports.

Science Papers Report on Splicing Enhancer, Point of Care Test for Sexual Transmitted Disease

In Science this week: a novel RNA structural element that acts as a splicing enhancer, and more.