NEW YORK (GenomeWeb) – Dicerna Pharmaceuticals this week announced preclinical data showing that its investigational primary hyperoxaluria type 1 (PH1) therapy DCR-PH1 could silence expression of its target by as much as 97 percent in a mouse model of the disease.

PH1 is a rare, inherited autosomal-recessive condition characterized by the liver's inability to metabolize a precursor of oxalate due to disruption of an enzyme called alanine-glyoxylate aminotransferase 1 (AGT1). As a result, calcium oxalate builds up in renal tubules causing kidney stones and fibrosis.

Get the full story with
GenomeWeb Premium

Only $95 for the
first 90 days*

A trial upgrade to GenomeWeb Premium gives you full site access, interest-based email alerts, access to archives, and more. Never miss another important industry story.

Try GenomeWeb Premium now.

Already a GenomeWeb Premium member? Login Now.
Or, See if your institution qualifies for premium access.

*Before your trial expires, we’ll put together a custom quote with your long-term premium options.

Not ready for premium?

Browse our free articles
You can still register for access to our free content.

In PLOS this week: Plasmodium knowlesi population genetics, oral microbiome of infants and children, and more.

The New York Times editorial board weighs in on scientific research misconduct.

The European Commission says it won't take funds from the European Research Council's budget for its new European Fund for Strategic Investment.

The case of the 'devious defecator' examines the protections of the Genetic Information Nondiscrimination Act.