May 15, 2018
Sponsored by
Tecan

Reaping the Benefits of Algorithm-Driven Research in Synthetic Biology

GenomeWebinar

Join or Log in for Access

This content is free
for registered users

Registering provides access to this and other free content.

Register now.

Already have an account?
Login Now.

This webinar discusses how an algorithm-driven synthetic biology system can enable engineering of biological systems for a range of applications.

Synthetic biology applies engineering principles to study biological systems through design-build-test cycles and offers great promise for applications in healthcare, the biochemical industry, as well as fundamental discovery. However, the workflows are still mainly driven by human scientists, making it slow, expensive, and prone to human error and biases.

Sponsored by

Reuters reports that UK researchers are using gene-editing tools to develop flu-resistant chickens.

Nature calls for genomics to become part of the World Health Organization's cholera surveillance approach.

Vox explores a proposal to institute a lottery system to award grant funds.

In Genome Biology this week: gut microbiome study of individuals from Tanzania and Botswana, sixth version of the Network of Cancer Genes database, and more.

Jan
30
Sponsored by
Loop Genomics

This webinar will provide a comparison of several next-generation sequencing (NGS) approaches — including short-read 16S, whole-genome sequencing (WGS), and synthetic long-read sequencing technology — for use in microbiome research studies.

Jan
31
Sponsored by
Roche

This webinar highlights the use of single-cell genomics to identify distinct cell types and states associated with enhanced immunity.

Feb
21
Sponsored by
L7 Informatics

This webinar will provide a first-hand look at how Gradalis, a clinical-stage immunotherapy developer, is using an information management solution from L7 to streamline its research, clinical, and manufacturing operations.

Feb
26
Sponsored by
Advanced Cell Diagnostics

This webinar will demonstrate how a research team at the Firestone Institute for Respiratory Health at McMaster University developed a cellular and molecular phenotyping pipeline using archived samples of lung tissue derived from patients diagnosed with fibrotic interstitial lung disease.