GenomeWebinars

CEO, OneCodex

This webinar will provide a comparison of several next-generation sequencing (NGS) approaches — including short-read 16S, whole-genome sequencing (WGS), and synthetic long-read sequencing technology — for use in microbiome research studies.

NGS is a powerful method for characterizing complex microbial mixtures, but both short-read 16S and WGS methods have their shortcomings. While short-read 16S data is inexpensive, it only enables family- or genus-level identification, is not comparable across different variable regions, and provides poor relative abundance estimation. WGS, meanwhile, offers more accurate relative abundance estimation and greater specificity, but at increased cost and complexity.

Another approach, LoopSeq synthetic long-read sequencing technology from Loop Genomics, offers an intermediate solution by providing species-level identification and significantly improved relative abundance estimation over short-read 16S data. LoopSeq uses unique molecular identifiers to generate synthetic long reads on short-read Illumina sequencing instruments. 

In this webinar, Nick Greenfield of OneCodex will discuss a comparison study of short-read 16S, WGS, and LoopSeq data for four samples – two known composition-positive controls, including a 20-organism bacterial mixture from ATCC, and two complex microbiome samples.

He will share details from this comparison as well as demonstrate how to analyze these datasets on the One Codex software platform.

Sponsored by

CEO, OneCodex

This webinar will provide a comparison of several next-generation sequencing (NGS) approaches — including short-read 16S, whole-genome sequencing (WGS), and synthetic long-read sequencing technology — for use in microbiome research studies.

NGS is a powerful method for characterizing complex microbial mixtures, but both short-read 16S and WGS methods have their shortcomings. While short-read 16S data is inexpensive, it only enables family- or genus-level identification, is not comparable across different variable regions, and provides poor relative abundance estimation. WGS, meanwhile, offers more accurate relative abundance estimation and greater specificity, but at increased cost and complexity.

Another approach, LoopSeq synthetic long-read sequencing technology from Loop Genomics, offers an intermediate solution by providing species-level identification and significantly improved relative abundance estimation over short-read 16S data. LoopSeq uses unique molecular identifiers to generate synthetic long reads on short-read Illumina sequencing instruments. 

In this webinar, Nick Greenfield of OneCodex will discuss a comparison study of short-read 16S, WGS, and LoopSeq data for four samples – two known composition-positive controls, including a 20-organism bacterial mixture from ATCC, and two complex microbiome samples.

He will share details from this comparison as well as demonstrate how to analyze these datasets on the One Codex software platform.

Sponsored by
Thu
Jan
31
1:00 pm2019
Sponsored by
Roche

Leveraging Single-Cell Genomics to Identify Drivers of Enhanced Immunity

GenomeWebinar

Pfizer-Laubach Career Development Assistant Professor, Massachusetts Institute of Technology

This webinar highlights the use of single-cell genomics to identify distinct cell types and states associated with enhanced immunity.

Immune homeostasis requires constant regulation in order to maintain the balance between a diverse and dynamic set of cell types under normal physiological conditions. Within immune tissues, distinct cellular subsets must work together to defend against pathogenic threats, maintain tolerance, and establish memory to restore homeostasis. While surveying multiple healthy individuals enables the exploration of potential ensemble immune solutions, comparing this data against outliers of health and disease can reveal deviations that underscore diagnostic, therapeutic, and prophylactic features of enhanced function or dysfunction.

In this webinar, Alex K. Shalek of the Massachusetts Institute of Technology (MIT) will discuss his work using single-cell genomic approaches — in particular, single-cell RNA-seq — to explore the functional diversity among immune cells within and across individuals. This project aims to uncover distinct cell types and states associated with improved immunity from the molecular level.

Dr. Shalek will also expand on the emerging experimental and computational strategies for altering ensemble cellular responses through targeted intra- or extracellular induction of preferred cell types and states.

Sponsored by

The Washington Post reports on a Federal Bureau of Investigation plan to place rapid DNA analyzers at booking stations around the country.

In an editorial, officials from scientific societies in the US and China call for the international community to develop criteria and standards for human germline editing.

The US National Institutes of Health is to review studies that have received private support for conflicts of interest, according to the New York Times.

In Science this week: the PsychENCODE Consortium reports on the molecular mechanisms of neuropsychiatric disorders, and more.