1:00 pm2015
Sponsored by

Clinical NGS Testing Strategies for Oncology and Rare Disease


Director, Casey Eye Institute Molecular Diagnostic Laboratory, Oregon Health and Science University 

Sequencing Group Leader, Michael Smith Genome Sciences Centre

This live online seminar will highlight recent trends in applying next-generation sequencing in the clinical setting, with a particular focus on oncology and rare disease. 

John Chiang, Director of the Casey Molecular Diagnostics Laboratory at Oregon Health and Science University, will discuss a novel targeted next-generation sequencing test for retinal dystrophy. The test has so far been used to interrogate the underlying molecular mechanisms involved in the presentation of RD in more than 700 patients. Dr. Chiang will share details on how the implementation of this test has not only improved his team's understanding of the genes contributing to RD, but has also led to improved patient care and given certain patients the opportunity to be enrolled in clinical trials. 

Richard Moore, Sequencing Group Leader at the British Columbia Cancer Agency's Michael Smith Genome Sciences Centre, will discuss the use of targeted sequencing at the GSC. In addition to production sequencing for research projects, the GSC recently implemented a College of American Pathologists-accredited diagnostic sequencing pipeline, currently offered for hereditary cancer with other panels under validation. 

This webinar is sponsored by WaferGen. Information on the company's targeted resequencing solutions is available here

Sponsored by
10:00 am2015
Sponsored by

Genomic Analysis of CTCs and cfDNA for Dynamic Monitoring of Tumors


Professor of Medicine/Hematology, Adjunct Professor of Genome Sciences, Director of the Center for Cancer Innovation, Co-Director of the Institute for Stem Cell and Regenerative Medicine, University of Washington

Senior Technical Director, Genomic Services, Covance 

This online seminar will review case studies demonstrating the clinical utility of CTCs and cfDNA to define and characterize a variety of dynamic genomic changes throughout the course of cancer detection and treatment. 

As a non-invasive method to improve prognoses, circulating tumor cells (CTCs) provide insights on drug resistance and determine appropriate, targeted cancer treatments. As compared to analyzing a single metastatic biopsy, CTCs provide a more holistic evaluation of metastases; they often demonstrate the same genetic mutations found in metastasized tumors and also reflect intratumoral and intermetastatic heterogeneity. Analysis of CTCs further allows biological characterization of a tumor that is inaccessible or too risky to biopsy. In addition, when collected and evaluated over an extended period of time, the rise and fall of CTC counts can offer clues into the effectiveness of a treatment, indicate the progression of disease, and detect metastatic spread earlier. 

The promise of periodic CTC analysis to monitor and treat tumors dynamically can also be extended to cell-free DNA (cfDNA) released from dying tumor cells and CTCs. Like CTCs, tumor-derived cfDNA reflects the genomic alterations of tumors -- but also boasts a short half-life that can indicate tumor changes faster than imaging or conventional biomarkers. Studies have also shown that cfDNA levels can reveal treatment response; amounts increase as a result of disease progression and decline with effective therapies. Also, when coupled with CTC characterization, genomic analysis of cfDNA can provide complementary information to detect mutations, which is especially valuable if CTC counts are lowered from a positive treatment response. 

When used together, cfDNA and CTC analyses could lead to more accurate profiling of tumors to detect various mutations, determine markers of resistance, and ultimately design a custom panel for personalized therapies. 

Sponsored by
Recent GenomeWebinars

Principal Investigator, Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital 

Chief Medical Officer, SomaLogic

In this on-demand webcast, Robert Gerszten of Massachusetts General Hospital will describe an ongoing project that is integrating metabolic and proteomic profiling to gain a better understanding of cardiometabolic disease.

In previous studies, Dr. Gerszten and his colleagues identified and validated metabolite profiles of those destined to develop overt diabetes mellitus. The strongest predictors of future diabetes included specific amino acid and lipid species, as well as 2-aminoadipic acid. These metabolites were found to predict diabetes mellitus above and beyond clinical risk factors and biochemical markers.

By integrating metabolite data with genome-wide scans, Dr. Gerszten and colleagues have identified 23 novel genetic determinants of human metabolism, including 8 loci previously implicated in human diseases.

More recently, Dr. Gerszten's group is complementing these mass spectrometry-based small molecule studies by integrating the Somascan apatamer-based proteomic technology into the work. Dr. Gerszten discusses how this approach is expected to lead to a more systematic understanding of cardiometabolic disease.

Sponsored by
11:00 am2015
Sponsored by

Finishing Genomes with Long Span NGS Reads


Research Project Leader, Institute of Experimental Botany, Olomouc, Czech Republic 

Doctoral Candidate, Harrison School of Pharmacy, Auburn University

Founder and Chief Scientific Officer, Lucigen

This online seminar describes new technology capable of generating mate-pair sequencing reads up to 50 kb in length, enabling de novo genome assembly, closure, and finishing on the Illumina or Ion Torrent next-generation sequencing platforms. 

Despite advances in NGS technology, true closure and finishing of genomes or bacterial artificial chromosomes remains extremely difficult. NGS instruments produce gigabases per run, but the short read lengths and small size of sequenced fragments result in gaps, misassembled contigs, collapsed repeats, and missing sequences, leaving these regions to be finished manually, if at all. 

With new long span NGS read technology, however, user-defined 2-8 kb mate-pair or 10-20 kb mate-pair libraries can be produced with bead-based or gel purification protocols, with the potential for up to 100 kb mate-pair libraries in the future. Featured speakers will highlight real-world applications of this technology and the utility of long-span mate-pair libraries for genome closure. 

Sponsored by
11:00 am2014
Sponsored by

Novel Applications of NGS in Cancer Diagnostics


Dr. Büttner is Professor and Chairman of the Institute for Pathology at University Hospital Cologne and Co-founder and Chief Scientific Officer, Targos Germany. He is a co-founder of the Network for Genomic Medicine in Lung Cancer.

Dr. Devgan is the head of Biological Research Content, Qiagen. He received his PhD in molecular biology and conducted post-doctoral research at Harvard Medical School before moving to the biotechnology industry.

This online seminar, recorded November 19, addresses new applications for next-generation sequencing in routine histopathological diagnostics and molecular pathology.

Reinhard Büttner, director of the Institute of Pathology at Cologne University Hospital, discusses how his team is integrating genomic information into cancer classification.

His presentation covers five key areas in which NGS is changing cancer diagnostics:

      1. Somatic genomic or epigenomic alterations acquired during carcinogenesis, which may be used for disease classification in combination with conventional morphological classifications.
      2. Oncogenic driver lesions, which provide molecular targets for prediction of effective and selective therapies.
      3. Genomic alterations in signal transduction cascades and gene expression patterns, which may be used as prognostic parameters for predicting the need and extent of adjuvant therapy.
      4. Genomic profiling for differentiating metastases from tumors of unknown primary and correct tumor staging.
      5. Mutational profiling of circulating tumor DNA, which may enable monitoring the response of tumors to therapy and the development of secondary resistance.

Vikram Devgan, head of Qiagen's Biological Research Content business, follows Dr. Büttner's presentation with a short review of current NGS technologies and applications of Qiagen's NGS technologies for molecular and predictive cancer diagnostics. He will cover the general principles of targeted enrichment panels design for NGS and the key factors that determine a successful NGS run.

Sponsored by

Director of the Clinical Genomic Sequencing Program, Greenwood Genetic Center 

This online seminar provides a first-hand look at how one clinical diagnostic laboratory is addressing the data-management challenges associated with high-throughput clinical genomics. 

Julie Jones, Director of the Clinical Genomic Sequencing Program at the Greenwood Genetic Center, shares insights on integration of next-generation sequencing data in clinical diagnostics. 

Dr. Jones will address how variant assessment and reporting workflows are set up at GGC, with a focus on panels, on full-exome sequencing, and on integrating copy number variant and NGS data. The presentation will include concrete clinical cases to illustrate the diagnostic workflow. Dr. Jones also shares notes on how labs can address workflow automation, clinical validation, compliance, and accreditation through the adoption of a standardized software platform, and review how GGC uses Cartagenia’s Bench Lab software platform to automate and streamline the analysis, interpretation, and reporting workflow for next-generation sequencing data in a diagnostic laboratory. 

Cartagenia's Bench Lab was developed to reduce turnaround time; generate clinical grade lab reports; manage increasing volumes of data; interact with referring physicians; and to allow labs to confidently interpret, report, and share genomic variants. 

Sponsored by