BBSRC iCASE PhD with the Health & Safety Executive - Integrating metabolomics and physiological modelling to ensure food safety

Organization
University of Birmingham
Job Location
School of Biosciences
Edgbaston
Birmingham
B15 2TT
United Kingdom
Salary
This BBSRC studentship is for 4 years. In addition to the payment of tuition fees, the award provides an annual stipend and funds for the laboratory studies. The Health and Safety Executive are providing further funding for this PhD.
Job Description

The University of Birmingham (UoB) is an international leader in OMICS TECHNOLOGIES and SYSTEMS TOXICOLOGY, achieved by pooling its expertise and capacity in omics and bioinformatics with specialists in toxicology, systems biology and chemical regulation. Our mission statement commits to offering leadership in the development and application of omics- and bioinformatics-based solutions, enabling evidence-based chemical safety science to safeguard both human and environmental health. 

The BBSRC recognise in their “Food, nutrition and health” priority area that in order to ensure food safety, including “issues around microbial and chemical contamination”, a mechanistic understanding of the relevant cellular processes is required upon which science-based risk assessment can be based. The overall aim of this PhD proposal is to develop and optimise a strategy for utilising metabolomics and computational modelling to derive metabolic measurements with immediate utility in the current risk assessment practices for pesticides in food products. The PhD will focus on the application of mass spectrometry metabolomics – that is, the use of mass spectrometry to measure the low molecular weight chemicals that drive the body’s metabolic biochemistry – to discover the metabolic effects of pesticides on cells in vitro, deriving both a deeper mechanistic understanding of these biochemical effects as well as dose-response data for quantitative risk assessment. Physiologically based pharmacokinetic (PBPK) modelling will enable translation of the findings from in vitro to in vivo and thereby to human risk assessments of the pesticides.

How to Apply

Visit https://www.findaphd.com/search/ProjectDetails.aspx?PJID=90808 for further details and application information.

An analysis appearing in PeerJ finds that social media mentions of a paper may lead to increased citations.

NIH's Michael Lauer looks at the number of grants, their amount, and funding success rates at the agency for last year.

At Nature, Johns Hopkins' Gundula Bosch describes her graduate program that aims to get doctoral students thinking about the big picture.

Patricia Fara writes about childcare funding, and women in science and science history at NPR.