Skip to main content
Premium Trial:

Request an Annual Quote

Not-for-Profit Readies to Bring Protein Chips to Medically Underserved Nations

Premium
A newly formed company co-founded by a Harvard University professor is looking to improve the health of developing nations by offering them free or low-cost lab-on-a-chip-based diagnostic tests.
 
Last month, Diagnostics-For-All and Harvard announced a collaboration to make the chip technology, which tests body fluids for proteins indicative of diseased and healthy states, available to countries that have limited access to complex laboratory diagnostic equipment.
 
The technology, which is still a few years away from being ready for mass use, was created by Harvard chemistry professor George Whitesides, who is also a co-founder of the company.
 
Under an agreement whose details are still being negotiated, DFA would license the technology from the university to sell to developing nations.
 
The plan is for DFA, based in Cambridge, Mass., to exclusively license the technology from the university without having to pay royalties when it sells or donates it to developing countries. However, the company would have to pay royalties to the university if the chips are marketed and sold commercially, university officials told ProteoMonitor.
 
“We are fulfilling our public mission, which is to make sure these technologies reach fruition, are developed to their fullest potential, and are made as widely available to the general public as is possible,” said Larry Schlossman, a spokesman for the university’s Office of Technology Development.
 
The technology is a paper-based microfluidic chip about the size of a fingernail and pre-treated with reagents for color-based assays.
 
According to a statement issued jointly by Harvard and DFA, the paper is patterned with hydrophobic polymers, “forming a series of channels that guide a fluid sample to the pre-treated regions of the chip. The resulting color changes can then be read and translated into a diagnosis using a key tied to the particular test being conducted.”
 
Because the chips are made of paper, they cost as little as a penny to use, significantly cheaper than other similar chips on the market or in development, which are made of silicon, plastic, or glass, according to Harvard and DFA.
 
There are other types of paper-based diagnostics — for example, pregnancy tests — but “those are, I would say, a primitive form of what this technology enables, where one has miniaturized it very substantially … Because of that miniaturization, [it] can incorporate a whole battery of different tests in a single diagnostic chip, if you will,” James Barber, executive director of DFA since June 1, told ProteoMonitor this week.
 
Because the chip is still being optimized, he could not say how many different diseases a single chip would be able to test for, but said there was a “handful” in laboratory testing.
 

These chips “are really to allow medical personnel who right now don’t have any effective way of either diagnosing certain disease states in the field or monitoring the health of patients who are being treated for those diseases in the field.”

Another advantage of the technology is its portability: No specialized equipment or complex pumps or power sources are needed. Instead, the chips use the paper’s natural capillary action. The result is that they can be used in settings to quickly determine a patient diagnosis in settings where there are no laboratories or only minimal medical infrastructure.
 
The chips, which are meant to be used once and then thrown away, have been developed initially for use with blood and urine but eventually will be designed for use with saliva and sweat, as well, Barber said. 
 
The company is initially targeting the chip for infectious diseases such as malaria, tuberculosis, hepatitis, and HIV and other sexually transmitted diseases, as well as the functions of major organs, such as kidney and liver, which can be adversely affected by the ailments and drug therapies for them.
 
Whitesides could not be contacted for comment, but in a statement said, “What we have with this technology is the means to help address significant diagnostic disparities between the United States and the developing world.”
 
For example, in the US, a test for drug-related liver complications takes just hours for results to be returned, but in other parts of the world, it could take weeks, he said. “By developing a low-cost and broadly-applicable test system designated to be deployed in regions with no or little access to complex laboratory diagnostic equipment, we hope to make a real impact on public health,” Whitesides said.
 
The chips, however, are still not ready to be manufactured on a mass scale, and the company is now concentrating on “translating what have been lab prototype procedures into full-scale manufacturing procedures,” Barber said, adding that that step could be a few years away. DFA is also currently looking for a manufacturing partner, though Barber declined to comment on specifics.
 
Barber said that the chip is not meant as a replacement for other high-end, more expensive diagnostic methods such as cell cytometry and microscopy.
 
“Certainly as one goes to very high-end, highly instrumented tests, one can do things we can’t do here,” he said. “This will be very fast as compared to very slow, very inexpensive versus more expensive, but some of those other techniques would be more quantitative than these would be initially.”
 
He also said that it was too early to compare the accuracy of the chip with existing diagnostic tests since results for the chip are coming off laboratory prototype tests and not off manufacturing lines.
 
“But intrinsically, these will be highly reproducible, sensitive tests,” he said.
 
The lab-on-a-chip is the first technology in DFA’s developing portfolio, but as the company gets off the ground, others will be added. Barber declined to describe them, but said that they are based on work being done in Whitesides laboratory.
 
The overarching theme to all the technology that DFA is interested in is that they are simple and inexpensive alternatives to other methods and platforms on the market and don’t require a laboratory setting or highly skilled and trained staff.
 
The company recently announced its board of directors. They are Barber; Whitesides; Carmichael Roberts, co-founder of DFA, and chairman of the board, and general partner at North Bridge Venture Partners; Hayat Sindi, co-founder of DFA, and visiting scholar at Harvard; and Isaac Kohlberg, senior associate provost and chief technology development officer at Harvard.
 
Formed just a few months ago, DFA aims to improve the health of developing nations by providing them diagnostic tests to which they currently don’t have access, Barber said.
 
That mission, he said, “has been driven by an interest in serving the needs of the developing world, which [is] heavily medically underserved today.” These chips “are really to allow medical personnel who right now don’t have any effective way of either diagnosing certain disease states in the field or monitoring the health of patients who are being treated for those diseases in the field. It’s to allow them to have a way of doing those things that from a practical standpoint they just don’t have at all.”

The Scan

Another Resignation

According to the Wall Street Journal, a third advisory panel member has resigned following the US Food and Drug Administration's approval of an Alzheimer's disease drug.

Novavax Finds Its Vaccine Effective

Reuters reports Novavax's SARS-CoV-2 vaccine is more than 90 percent effective in preventing COVID-19.

Can't Be Used

The US Food and Drug Administration says millions of vaccine doses made at an embattled manufacturing facility cannot be used, the New York Times reports.

PLOS Papers on Frozen Shoulder GWAS, Epstein-Barr Effects on Immune Cell Epigenetics, More

In PLOS this week: genome-wide association study of frozen shoulder, epigenetic patterns of Epstein-Barr-infected B lymphocyte cells, and more.