Skip to main content
Premium Trial:

Request an Annual Quote

Salk, Sanford-Burnham Lead $21M HIV Effort

By a GenomeWeb staff reporter

NEW YORK (GenomeWeb News) – A new research consortium led by the Salk Institute of Biological Studies and the Sanford-Burnham Medical Research Institute will use a $21 million grant from the National Institutes of Health to conduct systems biology-based studies of the earliest immune system responses to HIV infection.

The multidisciplinary research effort will include DNA sequencing, expression analysis, RNAi analysis, mass spectrometry, and other efforts aimed at discovering the cellular protein mechanisms that are the first line of defense against HIV.

Along with Salk and Sanford-Burnham, the research program will fund research at the University of California, San Francisco; Mount Sinai School of Medicine; the University of California, San Diego; Northwestern University; and the University of Pennsylvania.

"The events that occur immediately after exposure to HIV, which determines the ability of the virus to establish infection and ultimately shape the course of the disease, are very poorly understood," Sumit Chanda, an adjunct professor at the Salk Institute, said in statement.

"This grant funds a multi-center consortium that will integrate cutting edge technologies in systems biology and next-generation sequencing, with world-leading expertise in immunology and virology to decode and model the early molecular events that occur after HIV enters the body," Chanda added. "These projects will be fundamental towards the development of safe and effective HIV vaccines, as well as novel preventative therapies for HIV."

The research will include next-generation sequencing focused on identifying relevant polymorphisms at Northwestern University, microarray expression analysis at Burnham and Mount Sinai, high-throughput affinity purification mass-spec approaches at UCSF, and large-scale RNAi analysis projects at Sanford-Burnham, Chanda told GenomeWeb Daily News in an e-mail.

"More traditional approaches have relied upon investigating the roles played by single genes or individual cellular pathways," explained John Young, director of the Nomis Foundation Laboratories for Immunobiology and Microbial Pathogenesis at Salk.

"The team working on this grant wants to understand how the innate immune system functions as a whole, with the goal of building accurate mathematical and experimental models that can ultimately be used to inform vaccine design and used to predict which cellular factors represent new targets for antiviral therapies," Young said.

He also said that the research could potentially identify why some individuals differ in their susceptibility to HIV infection.

The Scan

Genome Sequences Reveal Range Mutations in Induced Pluripotent Stem Cells

Researchers in Nature Genetics detect somatic mutation variation across iPSCs generated from blood or skin fibroblast cell sources, along with selection for BCOR gene mutations.

Researchers Reprogram Plant Roots With Synthetic Genetic Circuit Strategy

Root gene expression was altered with the help of genetic circuits built around a series of synthetic transcriptional regulators in the Nicotiana benthamiana plant in a Science paper.

Infectious Disease Tracking Study Compares Genome Sequencing Approaches

Researchers in BMC Genomics see advantages for capture-based Illumina sequencing and amplicon-based sequencing on the Nanopore instrument, depending on the situation or samples available.

LINE-1 Linked to Premature Aging Conditions

Researchers report in Science Translational Medicine that the accumulation of LINE-1 RNA contributes to premature aging conditions and that symptoms can be improved by targeting them.