UPenn Researchers Use Xenogen Imaging Tools in Cell-Based Cancer Drug Screen | GenomeWeb

University of Pennsylvania School of Medicine scientists have developed a high-throughput functional cell-based screen using bioluminescence imaging to identify small molecules that modulate p53 transcriptional activity or p53-related proteins in cancer cells, and exhibit anti-cancer activity in human colon cancer xenografts.

The study underscores the importance of p53-related pathways and downstream molecules as potential drug targets, and could help establish bioluminescent cell-based assays as an effective way to screen modulators of such targets.

Get the full story with
GenomeWeb Premium

Only $95 for the
first 90 days*

A trial upgrade to GenomeWeb Premium gives you full site access, interest-based email alerts, access to archives, and more. Never miss another important industry story.

Try GenomeWeb Premium now.

Already a GenomeWeb Premium member? Login Now.
Or, See if your institution qualifies for premium access.

*Before your trial expires, we’ll put together a custom quote with your long-term premium options.

Not ready for premium?

Register for Free Content
You can still register for access to our free content.

In PLOS this week: genetic study of breast cancer in Egyptian families, mutations linked to cleft lip and palate, and more.

Council Bluffs, Iowa, schools are encouraging more girls to pursue STEM courses, according to the Associated Press.

Because of new open-access requirements, Gates Foundation-funded researchers can't publish in some top journals, Nature News reports.

In Science this week: deletion of one microRNA allows pluripotent stem cells to form embryonic and non-embryonic lineages, and more.