Close Menu

WASHINGTON, DC (GenomeWeb) – Researchers from Johns Hopkins University this week described the methodology they have developed for subduing sequencing errors in order to allow accurate detection and characterization of mutations at very low frequencies in circulating cell-free DNA.

The approach, called targeted error correction sequencing, or TEC-Seq, involves in-solution capture of a targeted panel of tumor-related genes and exceedingly deep sequencing — as much as 30,000x — of cell-free DNA fragments.

Get the full story with
GenomeWeb Premium

Only $95 for the
first 90 days*

GenomeWeb Premium gives you:
✔ Full site access
✔ Interest-based email alerts
✔ Access to archives

Never miss another important industry story.

Try GenomeWeb Premium now.

You may already have institutional access!

Check if I qualify.

Already a GenomeWeb or 360Dx Premium member?
Login Now.

*Before your trial expires, we’ll put together a custom quote with your long-term premium options.

Not ready for premium?

Register for Free Content
You can still register for access to our free content.
May
06
Sponsored by
Isoplexis

This webinar will discuss the application of single-cell proteomics and immune-imaging in adoptive cell therapy (ACT) for cancer.