Illumina last week launched two SNP-based assay panels designed to study genetic variation and function in the major histocompatibility complex region of the human genome, the company said.

The MHC Exon-Centric Panel consists of 1,228 SNPs in or within 10 kb of protein-coding regions, while the MHC Mapping Panel includes 1,293 SNPs evenly distributed across the entire region. The MHC is believed to contribute to many common autoimmune and inflammatory disorders including multiple sclerosis, type-1 diabetes and rheumatoid arthritis, Illumina said.

Get the full story with
GenomeWeb Premium

Only $95 for the
first 90 days*

A trial upgrade to GenomeWeb Premium gives you full site access, interest-based email alerts, access to archives, and more. Never miss another important industry story.

Try GenomeWeb Premium now.

Already a GenomeWeb Premium member? Login Now.
Or, See if your institution qualifies for premium access.

*Before your trial expires, we’ll put together a custom quote with your long-term premium options.

Not ready for premium?

Register for Free Content
You can still register for access to our free content.

Berkeley researchers have engineered yeast to make the molecule behind the hoppy taste of beer, Quartz reports.

King's College London researchers examine the influence of school type and genetics on academic achievement.

FiveThirtyEight writes that most who take a direct-to-consumer BRCA1/2 genetic test won't learn much from it.

In Science this week: early life experience influence somatic variation in the genome, and more.

Sponsored by
Dovetail Genomics

Proximity ligation technology generates multi-dimensional next-generation sequencing data that is proving to solve unmet needs in genomic research. 

Sponsored by
Horizon Discovery

This webinar will provide an in-depth case study demonstrating how reference standards can be used to develop and validate circulating tumor DNA (ctDNA)-based assays.

Sponsored by
Dovetail Genomics

This webinar will discuss a proximity ligation-based method for studying structural variation in formalin-fixed paraffin-embedded (FFPE) tissue.