Skip to main content
Premium Trial:

Request an Annual Quote

Treasure Trove of Stem Cells

Premium
  • Title: Assistant Member, Fred Hutchinson Cancer Research Center; Assistant Professor, University of Washington
  • Education: MD, Harvard Medical School, 1996
  • Recommended by: Lee Hartwell

Seeing an entire lifetime of work ahead of yourself might be daunting for some people, but for Colleen Delaney, it’s the motivation that keeps her juggling several projects, both clinical and research-based. Delaney’s claim to fame — and one that will no doubt stay with her in coming years — is being an integral part of the first team that succeeded in rapidly growing cord blood stem cells, successfully transplanting them into a patient, and coaxing them to regenerate and repopulate the patient’s blood system.

Delaney, who began this work in 2002 as a member of Irwin Bernstein’s lab at the Fred Hutchinson Cancer Research Center, helped find a way to grow cord blood stem cells on a Notch ligand called Delta. The challenge with cord blood stem cells has long been that, while they’re an excellent source of cells for patients who need a bone marrow transplant, they grow slowly — too slowly to really have an impact on the transplant patient’s system. But Delaney’s procedure of growing the cells on the Delta protein increased the stem cell population 150-fold, a full two orders of magnitude beyond the state of art. “Being able to grow or culture stem cells in the lab is really the holy grail of stem cell biology,” says Delaney, who started out as a doctor but developed a passion for translational research. “We have the first demonstration that we can culture stem cells in a lab for clinical benefit.”

So Delaney wasted no time in taking her work straight to the clinic. After several months of work to appease the regulatory side, she launched a small clinical trial to see how these rapidly grown stem cells would fare in a patient. The first patient, like many who need bone marrow transplants, couldn’t find a match in the marrow donor system, and wound up in Delaney’s trial. “The first patient that we treated did unbelievably well — to the point that you’re slapping yourself and thinking, ‘This can’t be true,’” she says. “I don’t think I slept the entire 16 days we were culturing the first patient’s stem cells.”

Delaney says that the progress she has seen could ultimately be a boon to the more traditional ‘omics communities. “If we can provide the technology that allows us to [rapidly grow] a stem cell,” she says, “that then gives more cells for people who are doing proteomics or genomics or gene therapy.”

Looking ahead

Delaney recalls that when she first started in the field, her reason for doing so was simple: “I knew that there were going to be amazing discoveries in my lifetime,” she says, “and I wanted to be a part of that.” And here she is: now head of the cord blood transplant program she launched, Delaney says that next on the agenda is finishing up the pilot phase of her 15-patient stem cell clinical trial and moving on to phase two: “opening up this technology to other centers.” She also hopes to explore non-transplant uses for the technology. The pilot phase has another year and a half or so to go, Delaney says.

Publications of note

Delaney was first author on a paper in the journal Blood that described the early stages of the stem cell culturing work. Published in 2005, “Dose-dependent effects of the Notch Ligand Delta1 on marrow repopulating ability of cord blood cells” demonstrates the team’s effort to isolate donated cells and rapidly culture them in a lab setting.

And the Nobel goes to …

Winning a Nobel prize would be just as hard to believe as the rest of the ride Delaney has been on, so she figures she might as well win it for the stem cell self-renewal work she’s doing. “I’m so amazed that we’ve gotten as far as we have,” she says. “I’m right in the middle of the holy grail, and it’s still out there.”

The Scan

Interfering With Invasive Mussels

The Chicago Tribune reports that researchers are studying whether RNA interference- or CRISPR-based approaches can combat invasive freshwater mussels.

Participation Analysis

A new study finds that women tend to participate less at scientific meetings but that some changes can lead to increased involvement, the Guardian reports.

Right Whales' Decline

A research study plans to use genetic analysis to gain insight into population decline among North American right whales, according to CBC.

Science Papers Tie Rare Mutations to Short Stature, Immunodeficiency; Present Single-Cell Transcriptomics Map

In Science this week: pair of mutations in one gene uncovered in brothers with short stature and immunodeficiency, and more.