Skip to main content
Premium Trial:

Request an Annual Quote

Sequencing When It Rains, It Nanopores


When Celera said it would sequence the human genome in three years, skeptics said it couldn’t be done. But for some, even that isn’t fast enough. “Today sequencing is too slow, too expensive, and inaccessible,” says Stephen Laderman, who heads the molecular diagnostic department at Agilent Technologies.

With Agilent’s funding, Harvard biologist Daniel Branton and physicist Jene Golovchenko, along with David Deamer of the University of California at Santa Cruz, are in the early stages of developing a technology they say would sequence an entire human genome in less than two hours.

Inspired by their cell membrane work, Branton and Beamer use a lipid bilayer, an ion gradient, and a membrane protein to take advantage of DNA’s negative charge. A DNA strand is piped through the membrane by changes in electrical charge. The idea is, as it shuttles through a 1.5 nanometer pore in the protein, each base identifies itself with a distinct electrical current.

The nanopore sequencer is likely up to a decade away from commercial viability. For one thing, the researchers are looking to replace the unstable protein pore with a solid-state material. “We’d like to use higher temperatures in order to keep the molecules single-stranded. But that’s not possible with a protein, which will be cooked like an egg,” says Branton. Another kink is the speed at which DNA flies through the pore: at a million bases a second, it’s too fast for today’s detectors to handle.

— Aaron J. Sender


The Scan

Not Immediately Told

The US National Institutes of Health tells lawmakers that one of its grantees did not immediately report that it had developed a more infectious coronavirus, Science says.

Seems Effective in Kids

The Associated Press reports that the Pfizer-BioNTech SARS-CoV-2 vaccine for children appears to be highly effective at preventing symptomatic disease.

Intelligence Warning on Bioeconomy Threats

US intelligence warns over China's focus on technologies and data related to the bioeconomy, the New York Times reports.

PLOS Papers on Campylobacteriosis Sources, Inherited Retinal Dystrophies, Liver Cancer Prognosis

In PLOS this week: approach to uncover source of Campylobacteriosis, genetic risk factors for inherited retinal dystrophies, and more.