Skip to main content
Premium Trial:

Request an Annual Quote

NIH Grants $45M for Genome Science Centers

NEW YORK (GenomeWeb News) – The National Institutes of Health has pledged $45 million in grants to establish two new genomics centers at the University of North Carolina at Chapel Hill and at the Medical College of Wisconsin (MCW), as well as to continue funding existing centers at Johns Hopkins University and at the University of Southern California.

The two new Centers of Excellence in Genomic Science at UNC and MCW will pursue genomics studies of mental health and gene regulation, respectively.

Under the new grants, MCW will receive around $8 million over three years and UNC will reap around $8.6 million over five years from the National Human Genome Research Institute and the National Institute of Mental Health.

Johns Hopkins' genomics center will receive around $16.8 million over five years to continue epigenetics of disease studies and USC will use around $12 million over the same period to conduct computational and informatics-based research of genetic variation and disease.

"Our aim is to foster the formation of innovative research teams that will develop genomic tools and technologies that help to advance human health," NHGRI's Acting Director, Alan Guttmacher said in a statement. "Each of these centers is in a position to tackle some of the most challenging questions facing biology today."

The grant to UNC will support the Center for Integrated Systems Genetics (CISGen), where scientists will seek to identify genetic and environmental factors that underlie and contribute to psychiatric disorders.

CISGen will use mouse models and computational biology to study genetic and environmental factors of such disorders, and it will develop new mouse strains specifically to study relevant behavioral traits. These models will serve as a resource of genomic studies screening for genetic variants that are linked to human psychiatric disorders.

"We can use the mouse to narrow the search space from billions of possibilities to only hundreds or even dozens," CISGen co-director and UNC Assistant Professor Fernando Pardo-Manuel de Villena said in a statement. "It's like the PowerBall when you know four or five of the six numbers for sure."

"We chose the hardest problems out there, the ones that have been most resistant to scientific inquiry in humans," explained Patrick Sullivan, CISGen's other co-director and a distinguished professor at the UNC School of Medicine. "We chose to study mouse versions of psychiatric traits potentially relevant to autism, depression and anxiety, and antipsychotic drug side effects and response to treatment."

In Wisconsin, the new center is a collaboration between the Medical College of Wisconsin, the University of Wisconsin, Madison, and Marquette University.

The team at MCW will focus on developing tools for analyzing the proteins that bind to particular DNA regions in an effort to understand the relationship between changes in protein-DNA interactions.

"What is needed, and what we will develop in this center, is technology that is able to identify all of the proteins that are interacting with the genome, even if we do not know in advance what their function may be," said the center's co-Director, Michael Oliver, a professor at MCW's Biotechnology and Bioengineering Center and the Human and Molecular Genetics Center.

Other NIH-funded Centers of Excellence in Genomic Science include centers at the California Institute of Technology, Harvard Medical School, Stanford University, Arizona State University, Yale University, and the Dana-Farber Cancer Institute.

The Scan

Not Yet a Permanent One

NPR says the lack of a permanent Food and Drug Administration commissioner has "flummoxed" public health officials.

Unfair Targeting

Technology Review writes that a new report says the US has been unfairly targeting Chinese and Chinese-American individuals in economic espionage cases.

Limited Rapid Testing

The New York Times wonders why rapid tests for COVID-19 are not widely available in the US.

Genome Research Papers on IPAFinder, Structural Variant Expression Effects, Single-Cell RNA-Seq Markers

In Genome Research this week: IPAFinder method to detect intronic polyadenylation, influence of structural variants on gene expression, and more.