The delicate cellular process that occurs during somite formation in early embryonic development has come into focus with the help of a computational model. Researchers at Indiana University's Biocomplexity Institute and the University of Arizona have developed a multi-scale mathematical model of somitogenesis by combining a cell-based simulation platform called CompuCell3D with existing models that integrate sub-models of intracellular genetic networks comprising the "segmentation clock," which determines how embryos develop.

Get the full story with
GenomeWeb Premium

Only $95 for the
first 90 days*

A trial upgrade to GenomeWeb Premium gives you full site access, interest-based email alerts, access to archives, and more. Never miss another important industry story.

Try GenomeWeb Premium now.

Already a GenomeWeb Premium member? Login Now.
Or, See if your institution qualifies for premium access.

*Before your trial expires, we’ll put together a custom quote with your long-term premium options.

Not ready for premium?

Register for Free Content
You can still register for access to our free content.

The London School of Economics' Daniele Fanelli argues at the Proceedings of the National Academy of Sciences that the reproducibility crisis in science isn't as dire as some say.

A team of researchers in Portugal has examined the genomic basis for racing pigeons' athleticism and navigational skills, finding it's likely polygenic.

Wired reports that diagnostic firms continue to seek, post-Theranos, the ability to diagnose diseases from small amounts of blood.

In Science this week: analysis of DNA from ancient North Africans, and more.