Skip to main content
Premium Trial:

Request an Annual Quote

Hiroki Ueda: He's Seen the Light

Premium

Title: Head, Laboratory for Systems Biology, RIKEN

Education: PhD, University of Tokyo, 2004; MD, University of Tokyo, 2000

Recommended by: Hiroaki Kitano

Still early in his career, Hiroki Ueda has already worked on both sides of the public-sector/private-sector divide. He com-pleted both his MD and PhD at the University of Tokyo, and also spent time working as a researcher for Yamanouchi Pharmaceutical as well as Sony Computer Science Laboratories. That's not the only divide he has crossed: Ueda has worked both in computer science — training under Hiroaki Kitano — and in the wet lab, learning about “high-throughput 'omics” technologies during his time at the pharma firm, he says.

Today, he hangs his hat at RIKEN, where he serves as head of the Laboratory for Systems Biology and as manager of the institute's functional genomics division in the Center for Developmental Biology.

Born in Fukuoka, Japan, Ueda's current experimental focus is on circadian rhythms, and how to better understand them using systems biology approaches. “My favorite system is the mammalian internal clock,” he says. Using high-throughput tools, he can monitor as many as 4,600 samples at a time, which he does to trace the network composed of clock genes. Ueda has fine-tuned the mammalian cells he uses in these experiments by introducing a receptor for light recognition, so his cells have literally seen the light. “We can control the clock in the cell by using light,” he says. “We can control the cell state … and then derive the mechanisms, the logic of the clock, by perturbation.” The careful monitoring and rigorous controls he employs for this result in comprehensive and quantitative data, he adds.

Ueda recognizes that his work stands on the shoulders of all those scientists who slogged through genetic experiments long before “high-throughput” was part of the lexicon. In the days when his own teachers and mentors were in grad school, “the focus was to identify the important genes,” he says. Thanks to their work, he doesn't have to identify genes one at a time or seek out the most important genes — so his work can focus on examining these genes in large sets, or better understand them using quantitatively oriented research.

As his work evolves, Ueda says that he will incorporate developmental biology research as well, expecting to take on questions about how cells differentiate into various types of cells.

Looking ahead

A challenge facing current biology, Ueda says, is dealing with the question, “What is life?” He believes that “to address that question, we maybe need to create the cell.” That will require more than a little technology development, Ueda says, pointing to tools that would “produce functional proteins” as well as “manipulate the membrane and the membrane proteins” as just two examples of what would have to be invented before scientists can build their own cell from scratch.

Publications of note

Ueda has already contributed significantly to the scientific literature. Recently, he and John Hogenesch of the Scripps Research Institute were corresponding authors on a paper in Nature Genetics this year called “Requirement for feedback repression in mammalian circadian clock function.” In this paper, the authors discussed a molecular genetic screen they developed to identify mutants of two circadian transcriptional activators in mammalian cells, from which they demonstrate evidence that the mammalian clock function relies on transcriptional feedback.

In another paper entitled “An improved single-cell DNA amplification method for efficient high-density oligonucleotide microarray analysis” (published this year in Nucleic Acids Research), Ueda and colleagues describe a strategy that will globally amplify mRNAs from individual cells, using both PCR and linear amplification techniques, for analysis on an oligo-based array.               

— MWS

The Scan

Pig Organ Transplants Considered

The Wall Street Journal reports that the US Food and Drug Administration may soon allow clinical trials that involve transplanting pig organs into humans.

'Poo-Bank' Proposal

Harvard Medical School researchers suggest people should bank stool samples when they are young to transplant when they later develop age-related diseases.

Spurred to Develop Again

New Scientist reports that researchers may have uncovered why about 60 percent of in vitro fertilization embryos stop developing.

Science Papers Examine Breast Milk Cell Populations, Cerebral Cortex Cellular Diversity, Micronesia Population History

In Science this week: unique cell populations found within breast milk, 100 transcriptionally distinct cell populations uncovered in the cerebral cortex, and more.