Skip to main content
Premium Trial:

Request an Annual Quote

Hiroki Ueda: He's Seen the Light


Title: Head, Laboratory for Systems Biology, RIKEN

Education: PhD, University of Tokyo, 2004; MD, University of Tokyo, 2000

Recommended by: Hiroaki Kitano

Still early in his career, Hiroki Ueda has already worked on both sides of the public-sector/private-sector divide. He com-pleted both his MD and PhD at the University of Tokyo, and also spent time working as a researcher for Yamanouchi Pharmaceutical as well as Sony Computer Science Laboratories. That's not the only divide he has crossed: Ueda has worked both in computer science — training under Hiroaki Kitano — and in the wet lab, learning about “high-throughput 'omics” technologies during his time at the pharma firm, he says.

Today, he hangs his hat at RIKEN, where he serves as head of the Laboratory for Systems Biology and as manager of the institute's functional genomics division in the Center for Developmental Biology.

Born in Fukuoka, Japan, Ueda's current experimental focus is on circadian rhythms, and how to better understand them using systems biology approaches. “My favorite system is the mammalian internal clock,” he says. Using high-throughput tools, he can monitor as many as 4,600 samples at a time, which he does to trace the network composed of clock genes. Ueda has fine-tuned the mammalian cells he uses in these experiments by introducing a receptor for light recognition, so his cells have literally seen the light. “We can control the clock in the cell by using light,” he says. “We can control the cell state … and then derive the mechanisms, the logic of the clock, by perturbation.” The careful monitoring and rigorous controls he employs for this result in comprehensive and quantitative data, he adds.

Ueda recognizes that his work stands on the shoulders of all those scientists who slogged through genetic experiments long before “high-throughput” was part of the lexicon. In the days when his own teachers and mentors were in grad school, “the focus was to identify the important genes,” he says. Thanks to their work, he doesn't have to identify genes one at a time or seek out the most important genes — so his work can focus on examining these genes in large sets, or better understand them using quantitatively oriented research.

As his work evolves, Ueda says that he will incorporate developmental biology research as well, expecting to take on questions about how cells differentiate into various types of cells.

Looking ahead

A challenge facing current biology, Ueda says, is dealing with the question, “What is life?” He believes that “to address that question, we maybe need to create the cell.” That will require more than a little technology development, Ueda says, pointing to tools that would “produce functional proteins” as well as “manipulate the membrane and the membrane proteins” as just two examples of what would have to be invented before scientists can build their own cell from scratch.

Publications of note

Ueda has already contributed significantly to the scientific literature. Recently, he and John Hogenesch of the Scripps Research Institute were corresponding authors on a paper in Nature Genetics this year called “Requirement for feedback repression in mammalian circadian clock function.” In this paper, the authors discussed a molecular genetic screen they developed to identify mutants of two circadian transcriptional activators in mammalian cells, from which they demonstrate evidence that the mammalian clock function relies on transcriptional feedback.

In another paper entitled “An improved single-cell DNA amplification method for efficient high-density oligonucleotide microarray analysis” (published this year in Nucleic Acids Research), Ueda and colleagues describe a strategy that will globally amplify mRNAs from individual cells, using both PCR and linear amplification techniques, for analysis on an oligo-based array.               


The Scan

Fertility Fraud Found

Consumer genetic testing has uncovered cases of fertility fraud that are leading to lawsuits, according to USA Today.

Ties Between Vigorous Exercise, ALS in Genetically At-Risk People

Regular strenuous exercise could contribute to motor neuron disease development among those already at genetic risk, Sky News reports.

Test Warning

The Guardian writes that the US regulators have warned against using a rapid COVID-19 test that is a key part of mass testing in the UK.

Science Papers Examine Feedback Mechanism Affecting Xist, Continuous Health Monitoring for Precision Medicine

In Science this week: analysis of cis confinement of the X-inactive specific transcript, and more.